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Renewables are increasing...

Global Renewable Power Capacity, 2007-2017
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Recent system events in North America highlight need for improved

modeling...

900 MW Fault Induced
Solar Photovoltaic
Resource Interruption
Disturbance Report

1,200 MW Fault Induced-
Solar Photovoltaic
Resource Interruption
Disturbance Report

Southern California Event: October 9, 2017

Southern California 8/16/2016 Event Joint NERC and WECC Staff Report

June 2017
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Source: Ryan Quint, “Reliability Perspectives: Increasing Penetrations of Inverter-Based Resources,” 2019 IEEE PES General Meeting, Atlanta
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Bulk power system inverter based resource modeling
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VALUES OF GENERIC MODELS

* Validation: Numerous validation cases demonstrated

» Portability across software platforms: Implemented and tested in major commercial tools, and
consistentacross the tools

* Transparency & Documentation: Standard, generic, public and open with
documentation/specifications that are available to all

* Publicly Available: Avoid this issue of being able to share models.

« Modeling the Future: Generic models are useful for performing futuristic studies where the actual
equipment to be used is not yet known

* Trend of Response: The models are accurate to represent the trend of response one can expect
from inverter based resources
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State of the art available generic models
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Wind
% Current Source
‘% REPC_A REEC_A REGC A Model User Guide for Generic Renewable Energy
5 Output Output - System Models
£ Single plant feeds ) PV feeds
< into~~ into Voltage Source
g e REEC_B 3002014083
E - REGC B |
£ Multiple plants Battery
= REEC_C

Flant level controller Generator/convertor model
model
Electrical controller
model
Latest renewable energy models availablein commercial Publicdocument:
platforms for dynamic studies (positive sequence) https://www.epri.com/#/pages/product/00000

0003002014083/?lang=en-US
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Limitations of State of the Art Converter Positive Sequence Dynamic Models

Generic Positive Sequence Models Limitations
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Proposed new positive sequence model for low short circuit systems
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Does it work in a large system..?

Qg (Mvar) Pg (MW)

Vt (pu)

= A portion of a large utility’s system
= While an exact match is not obtained (and is not expected), the trend of response is

same
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Summary...

= With increased IBR connected to low short circuit regions of the network, state of the art
positive sequence models may not show certain instabilities.

= Improved positive sequence converter model can represent fast oscillatory dynamics
from inverter controls

— Requires values for additional parameters

= [t provides another dimension to a transmission planner in analyzing generator
interconnection requests.

= [t is however not intended to be a replacement for detailed EMT studies (where
necessary)
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DER Modeling for Transmission Planning Studies
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Why should DER be modeled explicitly...?

Block tripping of DERS can be a concern to system stability
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DER_A Block Diagram

Proportional voltage control
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Obtaining generic parameters of the voltage trip characteristics
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The model parameterization challenge...
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Total kW of DER that are able to ride through a voltage event has a nonlinear relationship with level of sag/swell
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The Parameterization Challenge (cont'd)...

= Factors that affect the ride through of DER on a
feeder:
— Type of DER (3-phase or 1-phase)

— Location of individual DER on the feeder o
Transmission

— Balance of load across three phases _ planner has
- Presence of capacitor banks or voltage regulators minimal to zero
information
— Voltage magnitude threshold of DER trip
— Type of voltage event ~ Transmission
= Sag or swell, along with balanced or unbalanced [ Planner has
— information

This behavior is essentially within a black box, and development of generic parameters for a wide variety of
feeders and geographical areas is of interest

i @ 901¢ A ELECTRIC POWER
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Feeders in Arizona...

= Feeder 1:
— Purely residential
— Peak load of 9.69 MW, minimum load of 1.71 MW
— Only single phase DERs were studied, with total DER of 4.8 MW and 7.2 MW

= Feeder 2:
— Urban with mixed customer class of 25 % commercial and 75 % residential
— Peak load of 9.69 MW, minimum load of 2.45 MW
— Only single phase DERs were studied, with total DER of 2.42 MW and 7.27 MW
= Feeder 3:
— Rural with mixed customer class of 60% commercial and 40% residential
— Peak load of 5.27 MW, minimum load of 2.05 MW
— Both three phase and single phase DERs were studied, with total DER of 2.63 MW and 3.95 MW

. - E N ELECTRIC POWER
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Ratio of DER active power after voltage event

A result from feeder 1...

= Wide variation in DER kW that ride through depending on location on feeder
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Summary of Arizona feeder resulis...

= Tripping profile split by %age of DER presence, for balanced/unbalanced event

Average of Tripping Characteristics Average of Tripping Characteristics
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Generally, 0.52pu —0.48pu for under voltage and
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75% DER with balanced event
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The Imporiance of DER_A Parameterization
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The system challenge...

= [n the transmission system, single phase faults and trips are more common than three
phase faults.

= Based on the transformer winding connection, a single phase fault on the primary side
can impact two phases on the secondary side.

= DER connected on both affected phases may trip.

= Can a positive sequence model (which assumes balanced phases and models all phases
equally) capture this trip behavior?

. - E N ELECTRIC POWER
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How does this impact DER tripping...?

lenoringtransient impact of other elements on the feeders

When the transformer is Y-Y connected When the transformer is A-Y connected
= Assuming all DER on the feeder have a voltage trip = Assuming all DER on the feeder have a voltage trip
threshold of 0.5pu threshold of 0.5pu
— Any three phase DER can trip because voltage of phase A — Any three phase DER located towards the tail end of the
goes below 0.5pu feeder (which has minimal voltage support) may trip as
— Any single phase DER on phase A can trip as phase A voltage phase A and Cvoltageare closeto 0.5pu
is below 0.5pu — Any single phase DER on phases A or C may trip as voltage is
— Chances of cascade impacting neighboring phases s close to 0.5pu
minimal — Chances of cascade trippingare higher as voltages of two

phases are close to trip threshold

1. Inbothscenarios, thetrip of DER starts at a positive sequence voltage value greater than the 0.5pu trip threshold

2. Foralargelybalanced feeder,a A —Y transformer connection can resultin larger DER trip

ELECTRIC POWER
RESEARCH INSTITUTE
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A possible solution using DER_A - construct a ‘parallel’ characteristic during
the fault
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Reference: Deepak Ramasubramanian, Inalvis Alvarez-Fernandez, Parag Mitra, Anish Gaikwad and Jens C. Boemer, “Ability of Positive Sequence Aggregated Distributed Energy Resource
Model to Represent Unbalanced Tripping of Distribution Inverters,” 2019 IEEE Power & Energy Society General Meeting (PES), Atlanta, GA, 2019
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Impact on bulk power system...
= Simulation premise
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— System generation is 69 GW, gross load is 81 GW, DER is 14 GW

— Fault applied in the middle of transmission line, and subsequently line is cleared in 6 cycles
— Load dynamics are considered along with DER dynamics
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Without the parallel trip characteristic, there could be a huge misrepresentation of amount of DER that ride through a single
phase fault
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Summary...

= There is both a modeling and parameterization challenge to represent aggregate impact
of distributed energy resources

— Transmission planner has visibility only of one ride-through impacting factor out of six factors
— Parameterization of an essential black box model

= DER_A has shown promising preliminary results

= Should however go hand-in-hand with load modeling

= [t is possible that unexpected results might arise due to block tripping of DER
represented by model

— However, it is not uncommon for DER to trip in blocks as the tripping is based upon pure logic
embedded in the controllers.
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