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More-Electronic Power Systems: A Pandora’s Box?
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Power Electronic Timeline

1930s 1960s 1970s 1980s 2000s
Mercury Arc Valve Diode Thyristor MOSFET IGBT
HVDC Rectifier Exciter & HVDC Power Supply Inverter & HVDC

» Thyristor Exciters are widely used in power generation since 1970s
» MOSFET Power Supplies are widely used in power consumption since 1980s

» Why we start talking about more-power-electronic grid now, not thirty years ago?



The Rise of Electronics in Power Generation
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The Rise of Electronics in Power Transmission
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What Makes the Difference?

Frequency Scale
A

- High

Commutation constraint

High control bandwidth
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What Are the Consequences?

Frequency Scale
A

- High

DFIG Fault Ride Through =  Wide-Area Fault Propagation
DFIG Resonance Interaction =  Wide-Frequency Oscillation
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Partial Full Power Scale

Reduced fault tolerance =  [CC-HVDC Commutation Failure
New oscillation mode m  |[CC-HVDC Torsional Interaction

New whole-system behaviour
- Low




Whole System Interaction

= Speed governor

Prime » Turbine dynamics
/ Mover \
=  Current Relay Electric " DFIG
= Distance Relay Protection Machine = Synchronous Generator
= Differential Relay » Induction Motor

& / = Current Control

= Harmonic Filter : " ACVoltage Control
Passive Power = AC Power Control

= Series/Shunt Compensator .
Element Electronic . :
»  Transmission Line and Cables - DC Link Control

= Phase Locked Loop
=  Mode Transition



Whole System Interaction
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Whole System Interaction

= Speed governor
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Whole System Interaction

= Speed governor
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. : Electric
= Distance Relay Protection Machine = Synchronous Generator
= Differential Relay = Induction Motor
Fault Ride Through
and Recovery
= Current Control
= Harmonic Filter pcsive bower = AC Voltage Control
= Series/Shunt Compensator . ACP gwer Control
o . Element Electronic = DC Link Control
= Transmission Line and Cables -

= Phase Locked Loop
=  Mode Transition



Whole System Interaction
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Whole System Interaction
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Two Physical Views

Mechanical-Centric: Torque Coefficient
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Two Mathematical Tools

State-Space: Preserve Structure Transfer-Function: Directly Measurable
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Unified Framework for Whole System Integration

Preserve Structure
Whole-System Analysis

Directly Measureable
Local-System Analysis

Mathematic Tool
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Unification of Mechanical and Electronic Views
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Mechanical & Electronic

&w o GT,’_,_J G*uu,:l ﬂlT-Ijirﬂ-
dq: swing frame (rotor, PLL ...) Ai ] GT:‘ G Awv

d lq’: steady frame (operating point) ‘

|

&w - GT,-_,_,I G'Uw &TIH

I Ai’ — f{}% -\ Gry | Gy ) \AY — Vcl%
t 1)
af: stﬁtlonary frame ‘
(&w) B (G’Tw GLM) (ATm)
&if - f _ ! . &,U.F
Reflecting mechanical dynamics in impedance/admittance Ti vt

4

G;-g — Gm' + (I[I - Gvivﬂ){s + Gt:m%]_lg-tw

4
Z' =y =-aG;

18



Electronic 2 Mechanical
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Reflecting electronic dynamics in torque coefficient
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Unification of State-Space and Transfer-Function Methods

Residue

20



Residue is Participation Factor

Apparent State

Input and output are acting on the same apparent state
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Example: Synchronous Generator

K:.; : mechanical dynamics embedded }’,;ﬂ : mechanical dynamics not embedded
45 g dynamics 45 ﬂux’dynamlcs
@ 30 : . @ 30
° swing ;iynamlcs °©
§ 15 g 15
T 0 T 0
g g I,
s -15 s -15
X
=30 -30
-10%-10%-10"-10°-10"-102 102 10" 10° 10" 10? 10° -10*-10%-10"-10°-10"-10? 10 10" 10° 10" 10 10°
200 e e 200
—_ —_ theory
g 16 8_ 0 X simulation
& 0 71* & 0
2 =
3 <100 3 -100 PO I
© ©
L theory e
Q. -200 X simulation Q. -200
-300 _— -300 —
-10°-10%-10"-10%-10"-10% 10 10" 10° 10" 10? 10° -10%-10%-10"-10%-10"10% 10 10" 10° 10" 10? 10°
Negative Frequency (Hz) Positive Frequency (Hz) Negative Frequency (Hz) Positive Frequency (Hz)

Admittance of a synchronous generator with and without mechanical dynamics reflected



PLL-Inertia Interaction : Z-Representation (Electronic)

Root Locus of Whole-System Impedance Z|,

150
100 -
)
\I, 50 x X
5
P :, | | pay
e e N A . g
‘ ' ’ Phase Locked Loop Rotor Inertia & ol 4 _Sensitive Poles
(PLL) '_é" : P
Synchronous 100 x
! ‘ ! ...................... Generators e |
o S / ‘ 150 ' —C " L : —
Z, ys Submarine Cable —@ 700: 600 -500-" 400 300 200 ~100. O 1100
3 ‘ - Real Part (Hz) :
L) , —Q ;
I S Loads 10HzZ x A
oads % &
= —_ x U,
....................... ~N 2 x o’ e“
< “x %
& x —>»
= 0 x x xx x X 20 X = x
g : 1Hz
B xx
©
E2f i
x
x
& |
6 5 4 3 2 1 0 1 2

Real Part (Hz)

23



PLL-Inertia Interaction : Z-Representation (Electronic)

DC-link control bandwidth

DC-link control bandwidth
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Impedance of a synchronous generator with mechanical dynamics

electronic mechanical
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Poles in the right half plane

Synchronous generator impedance has unstable poles
at positive reactive power (over excitation)

= Converter =~ current source when PLL and dc-link

control is slower than inertia timescale
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PLL-Inertia Interaction : K-Representation (Mechanical)

Amplitude (db)
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Bode Plot of Torque Coefficient K
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Thank You!



